Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Molecules ; 28(1)2022 Dec 30.
Article in English | MEDLINE | ID: covidwho-2238921

ABSTRACT

Although the incidence and mortality of SARS-CoV-2 infection has been declining during the pandemic, the problem related to designing novel antiviral drugs that could effectively resist viruses in the future remains relevant. As part of our continued search for chemical compounds that are capable of exerting an antiviral effect against the SARS-CoV-2 virus, we studied the ability of triterpenic acid amides to inhibit the SARS-CoV-2 main protease. Molecular modeling suggested that the compounds are able to bind to the active site of the main protease via non-covalent interactions. The FRET-based enzyme assay was used to reveal that compounds 1e and 1b can inhibit the SARS-CoV-2 main protease at micromolar concentrations.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Amides/pharmacology , Amides/metabolism , Antiviral Agents/chemistry , Protease Inhibitors/chemistry , Molecular Docking Simulation
2.
12th International Conference on Biomedical Engineering and Technology, ICBET 2022 ; : 156-160, 2022.
Article in English | Scopus | ID: covidwho-1962431

ABSTRACT

The serine/threonine p21-activating PAK kinases which act as important mediators of the Rho family of GTPases (Rho GTPases) Cdc42ĝ€¢GTP and Racĝ€¢GTP. PAK1 is one of the key molecules in the regulation of cytoskeletal actin assembly, phenotypic signaling, gene expression, and directly affects many cellular processes such as cell motility, invasion, metastasis, cell growth, angiogenesis, cell cycle progression. To date, several sulphated steroidal saponins have been reported to block the PAK1-dependent growth of A549 lung cancer. In this study, we investigated molecular interactions of N-triterpene saponins and PAK1 in silico molecular docking, and further evaluated the binding affinities. Molecular docking simulation was performed through AutoDock 4.2.2. an automated docking tool. We found that N-triterpene saponin 2 had the higher binding affinity towards PAK1 targeted protein. To the best of our knowledge, no report on N-triterpene saponins as a PAK1 inhibitor. © 2022 ACM.

3.
International Journal of Pharmaceutical Sciences and Research ; 12(12):6214-6220, 2021.
Article in English | EMBASE | ID: covidwho-1884765

ABSTRACT

In recent years, it has been reported that many herbal plants contain antiviral agents which combat a human disease that is caused by pathogenic viruses. The natural products which are obtained from plants as antiviral agents against viruses have gone through researches to check the efficacy and potentials of the herbal products in the prevention of viral disorders. On the basis of randomized controlled studies and in-vivo studies, and in-vitro studies, some agents are utilized all across the globe. Progressively numerous studies on therapy of antivirals have been increased. Though, efficacy remains disputable for antiviral drugs that are employed for viral disorders. The viral diseases are challenging for the health of people around the world cause significant increase in mortality and enhance crises. There are many synthetic antiviral drugs that have a large number of side effects and have narrow therapeutic window range, while in the other hand herbal formulations have minimized side effects. The advantages of herbal formulation over synthetic drugs encourage us to devise and expand new herbal moieties against the emerging viral infections. The medicinal plants contain phytochemicals that have antiviral properties. In this paper, the activity of antiviral agents from medicinal plants which have importance in Ayurveda, are discussed along with their source.

4.
Journal of Advanced Biotechnology and Experimental Therapeutics ; 5(1):218-228, 2022.
Article in English | CAB Abstracts | ID: covidwho-1761066

ABSTRACT

SARS-CoV-2, a new and fast circulating coronavirus strain, infected over 214 countries and territories worldwide and caused global health emergencies. The absence of appropriate medicines and vaccinations has further complicated the condition. SARS-CoV-2 main protease (Mpro) is crucial for its propagation, and it is considered a striking target. This study used several computational approaches to determine the probable antagonist of SARS-CoV-2 Mpro from bioactive phytochemicals of Syzygium aromaticum. A total of 20 compounds were screened through in silico approach. The molecular dynamics simulation studies were then carried out for further insights. We found crategolic acid, oleanolic acid, and kaempferol have considerable binding affinity and important molecular contacts with catalytic pocket residues, His41-Cys145. The pharmacological properties through ADMET analysis also showed that these compounds could be used as safe drug candidates. The molecular dynamics simulation study further confirmed these compound's stability with Mpro. However, further detailed in-vitro and in-vivo analyses are compulsory to evaluate the real potentiality of identified compounds.

5.
Molecules ; 27(4)2022 Feb 09.
Article in English | MEDLINE | ID: covidwho-1715566

ABSTRACT

Betulinic acid (BA) and its derivatives exhibit a variety of biological activities, especially their anti-HIV-1 activity, but generally have only modest inhibitory potency against influenza virus. The entry of influenza virus into host cells can be competitively inhibited by multivalent derivatives targeting hemagglutinin. In this study, a series of hexa-, hepta- and octavalent BA derivatives based on α-, ß- and γ-cyclodextrin scaffolds, respectively, with varying lengths of flexible oligo(ethylene glycol) linkers was designed and synthesized using a microwave-assisted copper-catalyzed 1,3-dipolar cycloaddition reaction. The generated BA-cyclodextrin conjugates were tested for their in vitro activity against influenza A/WSN/33 (H1N1) virus and cytotoxicity. Among the tested compounds, 58, 80 and 82 showed slight cytotoxicity to Madin-Darby canine kidney cells with viabilities ranging from 64 to 68% at a high concentration of 100 µM. Four conjugates 51 and 69-71 showed significant inhibitory effects on influenza infection with half maximal inhibitory concentration values of 5.20, 9.82, 7.48 and 7.59 µM, respectively. The structure-activity relationships of multivalent BA-cyclodextrin conjugates were discussed, highlighting that multivalent BA derivatives may be potential antiviral agents against influenza infection.


Subject(s)
Antiviral Agents , Cyclodextrins/chemistry , Influenza A Virus, H1N1 Subtype/metabolism , Orthomyxoviridae Infections/drug therapy , Pentacyclic Triterpenes/chemistry , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Dogs , Drug Evaluation, Preclinical , Madin Darby Canine Kidney Cells , Orthomyxoviridae Infections/metabolism , Structure-Activity Relationship , Betulinic Acid
SELECTION OF CITATIONS
SEARCH DETAIL